Use of chemical detection methods for determination of marine biotoxins in shellfish

SEAFOOD SAFETY

Dr Andrew Turner Principal Chemist Food Safety Group Cefas, Weymouth

Natural Aquatic Toxins Team

- Official control testing of molluscs in Great Britain
- Research activities in toxins field
- Collaborative science with other countries
- Active publishers of new toxin science
- Reference materials, ring trials
- Method validation activities
- Marine and freshwater
- Invertebrates, fish, water and algae/bacteria

Cefas

"One Health" approach

Overview

- Shellfish toxin background
- Laboratory processes
- Current testing methods
- Validation / implementation
- Method developments
- Emerging toxin threats

Background

A brief history of shellfish toxin discovery

1947 – Brevetoxins (Gulf of Mexico); **1986** – Yessotoxins (Japan); **1989** – Pectenotoxins (Japan); **1980s** – Palytoxin/ovatoxins (Hawaii, Japan, Mediterranean); **1990s** – Cyclic imines (Canada, NZ); **2000s** – Tetrodotoxins (Japan, NZ, UK);

Cefas

Regulated toxins and microalgal producers:

ASP

(Domoic/epi-domoic acid)

- Nausea
- Diarrhoea
- Vomiting
- Confusion
- Memory loss
- Can be fatal

20 mg/kg

Pseudo-nitzschia spp.

LT

(Lipophilic toxins include: OA, DTX. YTX, PTX and AZA groups)

- Nausea
- Abdominal pains
- Vomiting
- Diarrhoea
- May be tumourigenic

160 μg/kg 3.75 mg/kg

Prorocentrum lima Dir

Dinophysis spp. Azadinium spinosum

PSP

(Saxitoxins)

- Numbness/tingling
- Headaches
- Nausea, Vomiting
- Respiratory distress
- Paralysis
- Can be fatal

800 µg STX eq./kg

Alexandrium spp.

Cefas

Toxin testing methods – history

- ASP HPLC-UV (Reference Method)
- PSP until 2006 all using PSP MBA^a
 - Pressure to replace use of animals
 - New methods required
- DSP until 2011 all using DSP MBA^b
 - Similar pressure to replace animals
 - Methods required detection of all other lipophilic toxins (LT) – DSP, PTXs, AZAs, YTXs,

^aAOAC 959.08; ^bbased on Yasumoto et al., 1978

Typical monitoring e.g. UK

Flesh monitoring programme

- Samples of shellfish are collected from pre-determined monitoring points
- Results used to inform opening of harvesting areas

Phytoplankton monitoring programme

- Water samples are also collected from pre-determined sites
- Presence of microalgal species/genus of concern above thresholds results in increased shellfish testing

•>200 sites

•>3,000 samples per year

•Covering all of GB

•5-55 per day

Shellfish testing process

- Samples received daily
- Shellfish shucked, >50g tissue homogenised
 - Min 10 organisms per sample
- Sub-samples for each of three testing methods
- Extraction, clean-up
- Analysis overnight
- Results reported next day (customer requirement)
 - Results >MPL = shellfish beds closed for harvest
 - Two consecutive <MPL to re-open

Testing methods

Biotoxin testing methods <u>All involve:</u>

Shellfish

Extract

Clean-up

Final sample

Analysis

- Homogenisation (blending)
- Solvent extraction (to remove toxins from shellfish)
- Clean-up (chemical and/or physical)
- Analysis
 - Separation
 - Detection

Homogenisation step

Shellfish

Homogenisation step

- Sample representative of sampling area
- Homogenisation (blending) Critical step

Extraction step

Shellfish

Extract

Biotoxin extractions

ASP	PSP	DSP
Hydrophilic	Hydrophilic (ionic)	Lipophilic
 Contains many hydroxyl groups Forms many H-bonds with water 		 Long chain carbon ring structure (non-polar) Few H-bond forming substituents
 Methanol/water 	 Weak acetic acid 	•Methanol
•Will extract mainly polar compounds	•Extract hydrophilic and ionic compounds	•Methanol will solubilise lipophilics, but less tendency to extract very hydrophobic compounds

Domoic acid (ASP)

Saxitoxins (PSP)

Lipophilic toxins (e.g. DSP) Cefas

Clean-up step

Shellfish

Extract

Clean-up

SPE

- PSTs (LC-FLD) non-polar materials to remove interferences
- LT can also use non-polar SPE
- Domoic acid can use ion exchange SPE
- PST (LC-MS/MS) carbon for salt removal

Analysis - separation

Shellfish

Extract

Clean-up

Final sample

Analysis

Separation

Cefas

Analysis - detection

Shellfish

Extract

Clean-up

Final sample

Analysis

Detection

Ultraviolet (UV)

Fluorescence (FLD)

Tandem mass spectrometry (MS/MS)

Instrumentation - HPLC

Bottles containing mobile phases -

Pump to deliver the mobile phase to the column

Autosampler – automatically injects – sample extracts into mobile phase

Column compartment where LC column is held

Detector – detects the compounds // when they elute from the end of the column

Computer to run the system and display results Cefas

Instrumentation

- <u>Currently</u>:
 ASP LC + UV
- PSP LC + FLD
- LTs LC + MS/MS

<u>Methods written in</u> <u>European regulations</u>

Analysis of known toxins Analysis involves:

- Use of certified reference standards (CRM)
 Generate external calibrations
- Quantitation against known concentrations

Testing methods for regulated toxins

Domoic/epi-domoic acid

ASP

 Domoic acid & epi-domoic acid – total content of whole shellfish or edible part alone

Epi-domoic acid (Domoic acid C5'-diastereomer)

Cetas

- EU reference method: HPLC-UV
- Shellfish + 50% Methanol extraction
- With or without SPE clean-up
- Very simple, reproducible no major issues

HPLC-UV

- EU reference method: HPLC-UV
- Shellfish + 50% Methanol extraction
- Without SPE clean-up
- Very simple, reproducible no major issues

LTs

OA, DTXs, YTXs, AZAs, PTXs

LC-MS/MS for Lipophilic Toxins

From 1st July 2011

- EU Reference Method
- EURL SOP specifies:
 - Aims and scope
 - Extraction and general conditions
 - Performance characteristics

OA-Group •OA, DTX1, DTX2 •Esters of OA-group (DTX3) •PTXs (PTX2, 1, 11)

YTX-Group
YTX
Homo-YTX
45 OH YTX
45 OH homo YTX

LT method overview

- Results report as:
 - Total OA-group
 - Total AZAs
 - Total YTXs
- Direct determination of toxins available as reference standards
 Indirect determination of other toxins
- High pH mobile phase (pH 11)
 - Ammonium hydroxide
 - Low pH methods can also be used

Cefas

LT LC-MS/MS

- High proportion of OA/DTXs present as acyl-esters
 - Alkaline hydrolysis to liberate
- +/- switching to encompass all groups
- Now implemented throughout EU

LT LC-MS/MS

Now implemented in throughout EU

Cefas

Saxitoxins

PSP toxins

Saxitoxin derivatives

N-hydroxyl

- Carbamate NEO, GTX1&4
- Decarbamoyl dcNEO, dcGTX1&4
- N-sulfocarbamate GTX6, C3&4
- Non N-hydroxyl
 - STX, GTX2&3, dcSTX, dcGTX2&3, GTX5, C1&2
- Others
 - M toxins, GC toxins and more...
- All have different toxicities; TEF of some still unknown

Cefas

R3

н

н

н

н

н

н

н

н

н

н

н

н

н

н

н

OH

OH

OH

OH

OSO-

OSO?

OSO;

OSO;

OSO;

OSO?

R4

OH

OH

OH

OH

н он

OH

OCONH₂

OCONH,

OCONH-

OCONH₂

OCONH₂

OCONH₂

OCONH-

OCONH₂

OCONH2 OCONHSO2

OCONHSO;

OCONHSO,

OCONHSO;

OCONHSO,

OCONHSO3

OCONHSO,

OCONHSO;

OCONHSO,

R2

н

н

н

н

н

н

н

н

н

OH

OH

н

н

н

н

н

н

OH

OH

OSO-

OSO₂

OSO-

OSO;

OSO-

OSO;

PSP toxins

Saxitoxin derivatives

N-hydr

– Carb

Deca

0

OH OCONHSO, н OH OH OCONH, OCONH: OH OCONH: OCONH, OH OCONH:

Cefas

R1

н

н

OH

OH

н

н

OH

OH

н

н

OH

OH

OH

н

н

н

н

R2

н

н

н

н

н

н

н

н

н

OH

OH

OSO-

OSO₂

OSO;

OSO;

OSO-

OSO;

R3

н

н

н OSO;

н

н

н

н

н

н

н

н

OH

OSO-

OSO;

OSO;

OSO₃

OSO;

R4

OH

OH

OH

OH

OCONH₂

OCONH-

OCONH;

OCONH₂

OCONHSO;

OCONHSO,

OCONHSO;

OCONHSO;

OCONHSO;

OCONHSO,

OCONHSO;

OCONHSO;

Thankfully: PSTs commonly occurring in naturally contaminated shellfish are available as standards and most have fairly well described TEFs

N-sulfocarbamate GTX6, C3&4

- Non N-hydroxyl
 - STX, GTX2&3, dcSTX, dcGTX2&3, GTX5, C1&2
- **Others** \mathbf{O}
 - M toxins, GC toxins and more...
- All have different toxicities; TEF of some still unknown

Current approach for PSP

- Qualitative screen of every sample
- Semi-quantitative "toxicity" reported
- Only samples >400 µg STX eq/kg are subjected to full clean up and quantitation
- All others reported as either:
 - Not detected
 - Detected (< 400)</p>
- <u>Reduces requirement for quantitation</u> <u>significantly</u>

Cetas

Validation and Implementation

Validation of Methods

Not an easy, quick or cheap process:

- Initial testing of method
- Assessment of issues
- Resolve practical issues and pitfalls
- In-house validation to define performance
- Comparison with other methods
- Define implementation approaches
- Implement

To be done for each species

Validation

Selectivity LOD/LOQ (screen & quant) Linearity and range Accuracy (CRM) Toxin recovery Precision (short, medium, long term) Ruggedness Uncertainty of measurement

International Union of Pure and Applied Chemistry Implementation of "new" methods In EU: Process is time-consuming:

- Method developed and single-lab validated:
 - Must follow full EC / IUPAC guidelines
 - Demonstrate "equivalence" with current ref method
- Formal multi-lab collaborative study
 Following specific guidelines (*e.g.* AOAC)
- Publication as Official Method (e.g. AOAC, CEN)
- Method acceptable within EU legislation
- Approval by Competent Authority and COT
- Accreditation to ISO17025

Implementation now may be possible Cefas

Practical Application of Methods

Key Points

- ISO 17025
- Highly trained analysts
- Robust instrumentation
- Automated processes
- Risk awareness, mitigation and contingency
- Availability of reference materials

Internal Quality Control

- Positive controls
- Blanks
- Calibrations
- Calibration checks
- Trend analysis
- External Quality Assurance
- Proficiency testing schemes
- Ring trials
- External materials

Starting from scratch?

LABORATORY

A WORKBOOK WITH AN EYE ON ACCREDITATION

> HOW-TO sign-document-implement

PRESENCE CONSULTING - OTERNATIONAL

Requirements

- Lab space + facilities (temp control)
- Instruments for each method
- Other associated instruments (centrifuges, water baths, pipettes – long list)
- Chemicals, reagents and standards
- Trained personnel
- Quality management programme
- Workbooks and systems for sample logging and tracking
- Results reporting framework
- Contingency for everything!

Ongoing method developments

1. Fast Chromatography

- UHPLC hardware:
 - Sub 2µm columns; high pressure; quick analysis
 - Expensive!
- "Fused core", "Superficially Porous" HPLC: – 2.6µm – 5µm pore; use with normal HPLC
 - Much cheaper!

Approaches taken

- Lipophilic toxins:
 - UHPLC with MS/MS essential for throughput
 - 5.5 min method; 3.5 min for DTX3s
- ASP and PSP:

- Test & validated fused core HPLC

2. Other PSP methods

- AOAC 2011.02 PCOX LC-FLD:
 - US/Canada
 - Requires at least 2 columns/systems to run each sample
- AOAC 2011.27 Receptor binding assay (RBA)
 US States

HILIC-MS/MS

C1

- Fast single step extraction
- One SPE clean-up
- One analysis per sample for rapid results
- Full separation of critical pairs, including epimers
- Total cycle time of 11.5 min for all PSTs
- Fully validated and collaborative study complete
- Compares well with LC-FLD

Cefa

Opportunities

- Use of chemical detection methods gives you LOTS of opportunity for research:
 - Rapid screening of toxicity (spatial/temporal change)
 risk management
 - Toxin profiles links to microalgal source
 - Discovery of new toxin threats to food safety and animal health
 - Valuable tools suitable for assessment of toxins in food webs
 - Collaboration with other organisations
 - Greater quality assurance of monitoring programmes

Article

Application of Six Detection Methods for Analysis of Paralytic Shellfish Toxins in Shellfish from Four Regions within Latin America

Andrew D. Turner ^{1,*}, Sophie Tarnovius ^{1,2}, Robert G. Hatfield ¹, Mickael Teixeira Alves ¹, Maggie Broadwater ³, Frances Van Dolah ³, Ernesto Garcia-Mendoza ⁴, Dinorah Medina ⁵, Maria Salhi ⁵, Alejandra B. Goya ⁶, Fernanda Barrera ⁷, Daniel Carrasco ⁷, Ignacio Rubilar ⁷ and Benjamin A. Suarez-Isla ⁷

Contents lists available at ScienceDirect

Harmful Algae

journal homepage: www.elsevier.com/locate/hal

Paralytic shellfish toxins and associated toxin profiles in bivalve mollusc shellfish from Argentina

Alejandra B. Goya^a, Sophie Tarnovius^{b,c}, Robert G. Hatfield^c, Lewis Coates^c, Adam M. Lewis^c, Andrew D. Turner^{c,*}

^a Marine Blouxin Deparament, Mar del Plata Regional Laboratory, Agrt-food Health and Quality National Service (SENASA) ^b Technische Universität München, Walther-Melßner-Srafle 3, 85748 Garching, German ^c Centre for Environmen: Fishertes and Anauculuue Science (Celeba). Barrack Road. The Nothe. Wevmouth. Dorset. DT4 8UB. United Kinedom

ANDREW D. TURNER, MONIKA DHANJI-RAPKOVA, and SUM Y.T. FONG Centre for Environment, Fisheries and Aquaculture Science, Barrack Rd, The Nothe, Weymouth, Dorset DT4 8UB, United Kingdom Lucy M. Turner^{1,2}*, Jonathan N. Havenhand¹, Christian Alsterberg³, Andrew D. Turner⁴, Girisha S. K⁵, Ashwin Ral⁵, M. N. Venugopal⁵, Indrani Karunasagar⁶ and Anna Godhe¹

Emerging toxin threats

Tetrodotoxins (TTXs)

LC-MS/MS method includes TTX

- Found in UK molluscs + other parts Europe, NZ
- Potential bacterial source e.g. Vibrio sp.
- Vibrio-positive oysters & mussels from south coast found contain TTX
- Also detected in Vibrio cultures

Cefas

Pinnatoxins & Brevetoxins

- LC-MS/MS method for LTs extended
- Includes PnTx E, F, G
- Brevetoxins (BTX B2, B4, B5; PbTx2, PbTx3, S desoxy BTX B2,)
- Evidence for PnTx G noted in N. Europe

Palytoxins/Ovatoxins

Issues in Mediterranean
 Sea + other regions

- LC with high resolution MS reported from Italy
- LC-MS/MS also useful

Cefas

Microcystins

LC-MS/MS

- Water
- Algae
- Shellfish
- Powders
- 5.5 min method

Overall

•Chemical detection methods provide powerful tools for the protection of shellfish consumers from contaminated shellfish products

•Methods need to be tested and validated in each lab for the species of relevance

 Labs must participate in IQC and EQA procedures routinely

Ideally, new biological assays to complement chemical detection tools

 Need to be aware of the potential for "new" or "emerging" toxin threats, now and in the future

How can we help?

