

Food and Agriculture Organization of the United Nations

Virtual Regional Workshop on bivalve molluscs sanitation November 2, 3 and 4 2021

Biotoxin hazards associated with bivalve mollusc consumption

Dr Andrew Turner Cefas

Biotoxin hazards associated with bivalve mollusc consumption

Overview

- Introduction to Harmful Algal Blooms
- Regulated marine toxins
- Health impacts
- Changes and emerging hazards

Cefas Natural Aquatic Toxins Team

- Official control testing of molluscs in Great Britain
- Research activities in toxins field
- Collaborative science with other countries
- Active publishers of new toxin science
- Reference materials, ring trials
- Method validation activities
- Marine and freshwater
- Invertebrates, fish, water and algae/bacteria
- "One Health" approach

Algal blooms

One Health impacts

Human health

Shellfish toxin poisonings

Ciguatera Fish Poisoning (CFP)
Toxin aerosols – respiratory illness
Recreational exposure sickness
Drinking water poisoning

~60,000 annual intoxications (~1.5% mortality)* Heat-stable; no antidotes; no clinical tests; sub-ppb levels can cause toxicity

Animal Health

- Marine mammal deaths
- Aquatic bird deaths
- •Fish kills
- Invertebrate health/growth/reproduction
- Drinking water poisoning
- Genetic impacts

Increasing global reports of morbidities & mortalities

Ecosystem Health

Mass mortalities
Aquatic chemistry changes
Population structures
Behavioural changes
Habitat/substrate changes
Ecosystem recovery rates
1/8 of "marine disturbances" from toxin exposure**

*Kantiani, L., et al. 2010. Emerging food contaminants: A review. Anal. Bioanal. Chem. https://doi.org/10.1007/s00216-010-3944-9.

**Sherman, B.H., 2000. Marine ecosystem health as an expression of morbidity, mortality and disease events. *Mar. Pollut. Bull.* https://doi.org/10.1016/S0025-326X(00) 00113-2.

A brief history of shellfish toxin discovery

1947 – Brevetoxins (Gulf of Mexico); 1986 – Yessotoxins (Japan); 1989 – Pectenotoxins (Japan); 1980s – Palytoxin/ovatoxins (Hawaii, Japan, Mediterranean); 1990s – Cyclic imines (Canada, NZ); 2000s – Tetrodotoxins (Japan, NZ, UK);

Paralytic Shellfish Poisoning - Saxitoxins

- Alexandrium sp.
- Gymnodinium catenatum
- Pyrodinium bahamense

- >57 analogues
- Wide ranging toxicities
- Mostly hydrophilic
- Variable charge states
- Blocks voltage-dependent Na channels in motor nerves
- Tingling/numbness muscle paralysis and death

Human health

- Primary cause of marine toxin related mortality
- ~2,000 intoxications pa; ~15% mortality
- Global distribution (Arctic to temperate southern hemisphere)
- 800 μg STX eq/kg MPL
- UK >27,000 μg STX eq/kg ; Global > 1 million
 Animal Health
- Mass mortalities of some bivalve species
- Seabird deaths
- Marine mammal deaths
- Sub-lethal & genetic chronic effects Ecosystem Health
- Trophic impacts following die-offs
- Entire trophic web can be affected (from plankton to whales)

Global distribution of PSP

- Notable changes over time
- Increased/improved monitoring and detection capabilities
- AND/OR
- Global expansion of HABs
 - Anthropogenic inputs
 - Environmental/climatic change
 - Water/shellfish stock movements

Courtesy of U.S. National Office for Harmful Algal Blooms (https://hab.whoi.edu/maps/regions-world-distribution)

Amnesic Shellfish Poisoning – Domoic acid(s)

Pseudo-nitzchia sp.

- Neuroexcitatory amino acid
- Nine isomers

Antagonistic effects at glutamate receptor, neuron damage activation of AMPA & kainate receptors
 Gastric, neurological, cardiac and memory loss + death

Human health

- 1987 Canada outbreak, including fatalities
- No subsequent known poisonings
- Causative diatoms found globally
- 20 mg/kg MPL
- UK >50 mg/kg

Animal Health

- 1961 California "chaotic, attacking seabirds"
- Behavioural changes in sea mammals
- Widespread seabird/mammal mortalities
- Sub-lethal chronic exposure effects

Ecosystem Health

Mass mortality impacts on trophic web

ASP global distribution

- 2016 map
- Temperate oceanic zones
- Aus/NZ
- Sampling bias likely
- Apparent near-absence in Latin America

Amnesic Shellfish Poisoning

Courtesy of U.S. National Office for Harmful Algal Blooms (https://hab.whoi.edu/maps/regions-world-distribution)

Diarrhetic Shellfish Poisoning – Lipophilic Toxins

- Dinophysis sp.
- Prorocentrum sp.
- Azadinium sp.
- Amphidoma sp.
- Lingolodinium sp.
- 11 OA analogues
- >60 AZAs
- Multiple YTXs/PTXs
- Inhibition of protein phosphatases
- Intense gastric symptoms (temporary), tumour promotion

Human health

- DSP = Most common shellfish toxin poisoning
- 2001-2015 ~1200 reported intoxications
- 3 outbreaks in UK in recent years
- Actual impact much higher, lack of clear symptoms
- AZP most recent ~200 intoxications to date
- YTXs/PTXs no known acute health impacts

Animal Health

Yessotoxin impact on mass invertebrate mortalities

Ecosystem Health

Trophic impacts following die-offs

Global distribution of DSP

Global distribution Dinophysis toxin detection (ICES-IOC HAEDAT, 2014)

Diarrhetic Shellfish Poisoning

Courtesy of U.S. National Office for Harmful Algal Blooms (https://hab.whoi.edu/maps/regions-world-distribution)

Latin America - DSP distribution

2014 - HAEDAT

2015 – Argentina (Turner and

Overall (2016)

Amnesic Shellfish Poisoning

Diarrhetic Shellfish Poisoning

Neurotoxic Shellfish Poisoning

UK Official control results

Test (2001 -)	Number	Total	
PSP MBA	7,354	46,455 PSP	
PSP HPLC Screen	37,804		
DSP MBA	22,549	51,348 DSP	
LT LCMSMS	28,799		
ASP	23,653	23,653 ASP	
Phyto (2005-)	13,836 (E&W)		

Test	> MPL
PSP	255 (0.6%)
DSP	2,775* (5.4%)
ASP	28 (0.1%)
AZA	47 (0.2%)

*includes atypical DSP MBA E&W

Known intoxications

- ASP none known
- PSP 1968 (78 hospitalised)
- DSP four known events (1997-2019)
- AZP none known

DSP UK intoxications from mussels –

Poisonings occasionally happen even with official monitoring established

Date	Source	Affected	Reasons	EPT?
1997	UK	49 people	Unknown	Not available
June 2006	Scotland	171 people	Missed sampling	None
July 2013	Shetland	~70 people	Sudden increase in toxicity between OC tests	None
June 2019	Cornwall	3 confirmed, 3 probable	Sudden increase in toxicity between OC tests	None

 In all cases, end product testing use would prevent consumption of contaminated products

Changes bringing new/emerging hazards and risks

Emerging/unknown toxin threats

 Tetrodotoxins AZA analogues •Cyclic imines Palytoxins Brevetoxins

Target analysis using LC-MS/MS

RAPID COMMUNICATIONS

Detection of the pufferfish toxin tetrodotoxin in European bivalves, England, 2013 to 2014

A D Turner (andrew.turner@cefas.co.uk)¹, A Powell¹, A Schofield^{1,2}, D N Lees¹, C Baker-Austin¹ Food Safety Group, Centre for Environment Fisheries and Aquaculture Science, Weymouth, Dorset, United Kingdom
 Department of Chemistry, University of Hull, Hull, United Kingdom

MDPI

Mar. Drugs 2015, 13, 1224-1254; doi:10.3390/md13031224

Review

Articl

ISSN 1660-3397 www.mdpi.com/journal/marinedrugs

marine drugs

Potential Threats Posed by New or Emerging Marine Biotoxins in UK Waters and Examination of Detection Methodology Used in Their Control: Brevetoxins

Andrew D. Turner 1,*, Cowan Higgins 2, Keith Davidson 3, Andrea Veszelovszki 3, Daniel Payne 1.4, James Hungerford 5 and Wendy Higman

差 marine drugs

Detection of Tetrodotoxin Shellfish Poisoning (TSP)

Toxins and Causative Factors in Bivalve Molluscs from the UK

Andrew D. Turner 1,*, Monika Dhanji-Rapkova 1, Lewis Coates 1, Lesley Bickerstaff 1, Steve Milligan 1, Alison O'Neill 1, Dermot Faulkner 2, Hugh McEneny 2, Craig Baker-Austin 1 David N. Lees 1 and Myriam Algoet

marine drugs

Review

MDPI

Potential Threats Posed by New or Emerging Marine **Biotoxins in UK Waters and Examination of Detection** Methodologies Used for Their Control: Cyclic Imines

Keith Davidson 1,*, Clothilde Baker 2, Cowan Higgins 3, Wendy Higman 2, Sarah Swan 1, Andrea Veszelovszki¹ and Andrew D. Turner²

Example 1 – Pufferfish poisoning toxins in European molluscs

Fish, Crustaceans, Amphibians, Octopus, Sea slugs, Gastropods, Newts

- Tetrodotoxins (TTXs)
- Na Ch receptors
- Most marine toxins are algal
- TTXs thoughts to originate from bacteria e.g. *Vibrio* sp.
- Biosynthetic pathway unknown
- Vibrio parahaemolyticus in UK
- Possible TTX in molluscs???

Southern England

- Vibrio sp. in shellfish
- TTXs in shellfish flesh
- Vibrio isolated and cultured
- TTXs in cultures
- First evidence for TTXs in European bivalves
- Further evidence for TTX association with bacteria

RAPID COMMUNICATIONS

Detection of the pufferfish toxin tetrodotoxin in European bivalves, England, 2013 to 2014

) Turner (andrew.turner@cefas.co.uk)', A Powell', A Schofield'', D N Lees', C Baker-Austin' Food Safety Group, Centre for Environment Fisheries and Aquaculture Science, Weymouth, Dorset, United Kingdom Department of Chemistry, University of Hull, Hull, United Kingdom

🏂 marine drugs

Detection of Tetrodotoxin Shellfish Poisoning (TSP) Toxins and Causative Factors in Bivalve Molluscs from the UK

Andrew D. Turner^{1,5}, Monika Dhanji-Rapkova¹, Lewis Coates¹, Lesley Bickerstaff¹, Steve Milligan¹, Alison O'Neill¹, Dermot Faulkner², Hugh McEneny², Craig Baker-Austin¹, David N. Lees¹ and Myriam Alene¹¹

Example 1 – Pufferfish poisoning toxins in European molluscs

300

- Southern England
- Inshore waters
- Shallow, estuarine
- 15 °C threshold

- England, Netherlands, Greece
- N. Italy

300

- S. Italy, Galicia, France
- EFSA guidance = $44 \mu g/kg$
- No regulations exist yet (more data)

RAPID COMMUNICATIONS

Detection of the pufferfish toxin tetrodotoxin in European bivalves, England, 2013 to 2014

A D Turner (andrew.turner@cefas.co.uk)*, A Powell*, A Schoffeld^{1→}, D N Lees*, C Baker-Austin* L. Food Safety Group, Centre for Environment Fisheries and Aquaculture Science, Weymouth, Dorset, United Kingdor. Department of Chemistry, University of Hull, Haul, United Kingdom.

🚵 marine drugs

Detection of Tetrodotoxin Shellfish Poisoning (TSP) Toxins and Causative Factors in Bivalve Molluscs from the UK

Andrew D. Turner 1,8, Monika Dhanji-Rapkova 1, Lewis Coates 1, Lesley Bickerstaff 1,

Pinnatoxins & Brevetoxins

- LC-MS/MS method for LTs extended
- Includes PnTx E, F, G
- Brevetoxins (BTX B2, B4, B5; PbTx2, PbTx3, S desoxy BTX B2,)
- Evidence for PnTx G noted in N. Europe

Brevetoxins from Karenia brevis

Until recently associated with USA and NZ event

Now found in parts of Mediterranean Sea

Pinnatoxins spread widely

Pinnatoxins & Brevetoxins

Neurotoxic Shellfish Poisoning

Brevetoxins from Karenia brevis

Until recently associated with USA and NZ event

Now found in parts of Mediterranean Sea

Pinnatoxins spread widely

Palytoxins/Ovatoxins

 Issues in Mediterranean Sea + other regions

- LC with high resolution MS reported from Italy
- LC-MS/MS also useful
- Method developed and applied to European algal samples

Cyanotoxins

- Wide range of toxin hazards from cyanobacteria
 - Microcystins
 - Nodularins
 - Cylindrospermopsins
 - Anatoxins
- Impacts on

٠

٠

- Drinking water quality
- **Recreational activities**
- Food safety
- Otters
- Links between freshwater cyanobacterial blooms and estuarine shellfish beds
- Shellfish accumulation studies

OPEN a ACCESS Freely available online

PLos one

Evidence for a Novel Marine Harmful Algal Bloom: Cyanotoxin (Microcystin) Transfer from Land to Sea Otters

Melissa A. Miller^{1,2}*, Raphael M. Kudela², Abdu Mekebri³, Dave Crane³, Stori C. Oates¹, M. Timothy Tinker⁴, Michelle Staedler⁵, Woutrina A. Miller⁶, Sharon Toy-Choutka¹, Clare Dominik⁷, Dane Hardin⁷, Gregg Langlois⁸, Michael Murray⁵, Kim Ward⁹, David A. Jessup¹

Total cyanotoxins (black), MC-LR (orange), and NOD (light blue) detected in *M. edulis* after a three day exposure to a mixture of *N. spumigena* KAC 66 and *M. aeruginosa* PCC 7813 followed by a 27 day depuration period. Values are shown as mean ± standard deviation (n=3). The red line shows the end of the exposure period.

Mussel exposure study – TDI exceeded by 500 times after 7 days accumulation (eating 20 mussels) Slow depuration

Cyanotoxins

- LC-MS/MS
- 1.7 μm, 2.1x50 mm Waters Acquity UPLC BEH C18 column + guard
- Water
- Algae
- Shellfish
- Powders
- 5.5 min method

Overall

- •Three main regulated groups PSP, ASP, DSP (LTs)
- •Brevetoxins regulated in some regions
- •Emerging toxin threats not to be ignored
- Proper risk assessment important to prevent outbreaks

Dr Andrew D. Turner CChem CSci

Principal Chemist Food Safety Group Topic Leader Natural Aquatic Toxins FAO Reference Centre Marine Toxins Advisor Andrew.turner@cefas.co.uk

