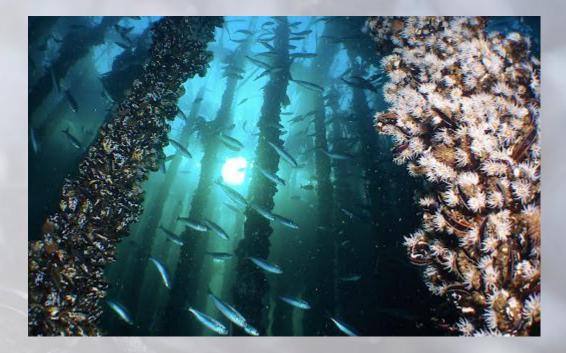
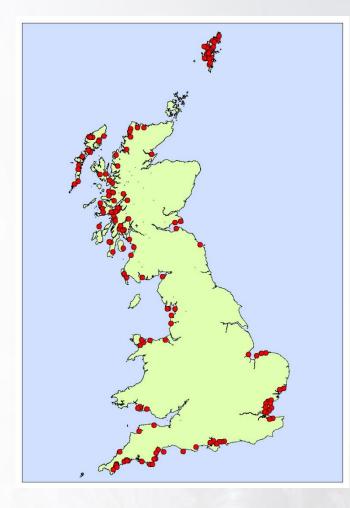


Food and Agriculture Organization of the United Nations

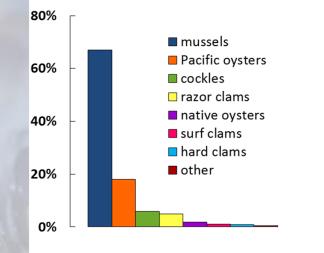

Virtual Regional Workshop on bivalve molluscs sanitation November 2, 3 and 4 2021

Official control monitoring of marine shellfish in UK waters: methods and approaches

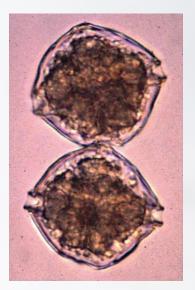

Dr Andrew Turner Principle Chemist, Food Safety Group, Cefas Official control monitoring of marine shellfish in UK waters: methods and approaches

Overview

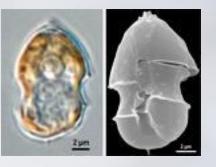
- Official Control Methods used in EU/UK
- Phytoplankton sampling and analysis
- Marine toxin sampling and analysis
- Chemical contaminants and methods

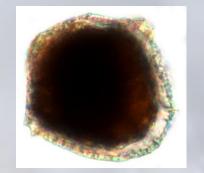


Official Control Monitoring


HAB phytoplankton and biotoxin monitoring programme

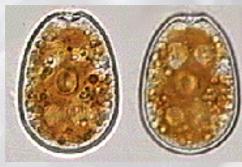
- Samples of are collected from predetermined monitoring points (weeklymonthly)
- ~ 170 monitoring points
- Toxins results reported 1 day after receipt
- Phyto 2 days after receipt
- Chemical contaminant monitoring
 - Annual, pre-selected points
 - Reported within 1 month



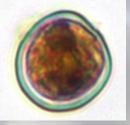

Toxin-producing species

Alexandrium sp.

Azadinium spinosum



Protoceratium reticulatum



Lingulodinium polyedrum

Dinophysis sp.

Prorocentrum lima

Pseudonitzschia sp.

Prorocentrum minimum

Purpose & benefits of water monitoring

Requirement of legislation

- Early warning system
 - Safeguard public health
 - Minimise losses to industry

• Better understanding of temporal and spatial distribution of toxin-producing species

Sample Collection

Samples must be **<u>representative</u>** of the algal community in the water body being sampled.

- Ideally, samples should be taken from over the shellfish beds at high water (+/-1hr)
- Various sampling methods
 - •Tube / pole samplers
 - Nets
 - Surface water
- Cells are easily damaged sample must be fixed as soon as possible after collection to keep cell integrity.
- Equipment must be rinsed prior to and after collection.

Phytoplankton testing

- Representative samples collected
 - Fixed with Lugol's iodine
- Water samples arrive ~9:00 am (Tue-Fri)
- Homogenisation (mixing)
- Dispense into Utermöhl chambers
 - Leave for 24hours to settle
- Analysis by base plate count of HAB taxa

Toxin Testing

Toxin testing

- <u>Representative</u> samples collected
- Shellfish bags arrive ~7.30 am (Tue-Fri)
- Homogenisation (blending)
- Separate into three tests (ASP, LT, PSP)

All tests involve

- Solvent extraction (to remove toxins from shellfish)
- Clean-up (chemical and/or physical)
- Analysis
 - Separation
 - Detection

Shellfish testing process

- Samples received daily
- Shellfish shucked, >50g tissue homogenised
 - Min 10 organisms per sample
- Sub-samples for each of three testing methods
- Extraction, clean-up
- Analysis overnight
- Results reported next day (customer requirement)

What happens if toxins/harmful plankton is detected ?

Shellfish flesh – EU regulatory limits

PSP: 800 µg/kg flesh ASP: 20 mg/kg flesh OA/DTX/PTX: 160 µg/kg flesh AZA: 160 µg/kg flesh YTX: 3.75 mg/kg flesh

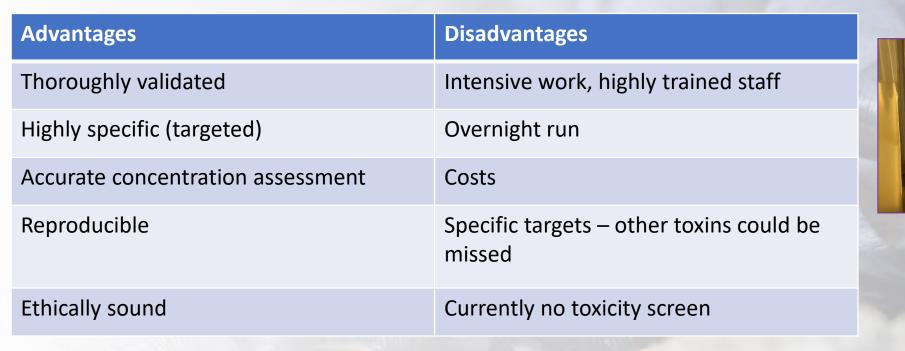
If regulatory limit exceeded

close area/recall product

Continue monitoring -- 2 negative results allow reopening of area

Water - Trigger levels (UK example)

PSP producing algae: Presence (40 cells/L) ASP prod. algae: 150,000 cells/L DSP prod. algae: 100 cells/L If trigger levels exceeded

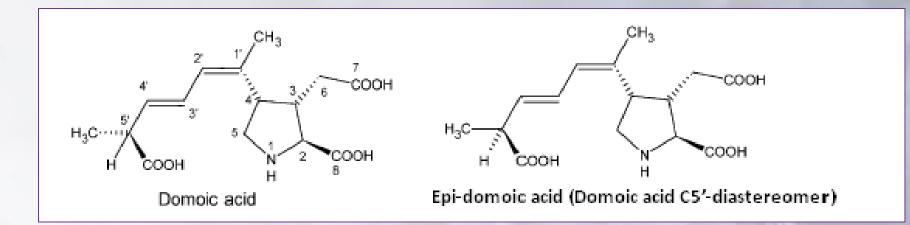

Increase monitoring

Current testing capabilities

Toxin methods:

- ASP LC-UV
- PSP LC-FLD
- LTs LC-MS/MS

Methods written in European regulations

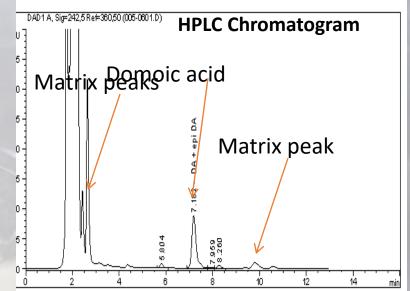


ASP

Domoic/epi-domoic acid

ASP

 Domoic acid & epi-domoic acid – total content of whole shellfish or edible part alone



- EU reference method: HPLC-UV
- Shellfish + 50% Methanol extraction
- With or without SPE clean-up
- Very simple, reproducible no major issues

HPLC-UV

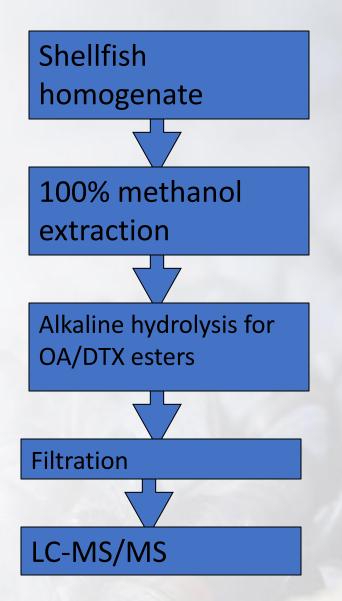
- <u>EU reference method: HPLC-UV</u>
- Shellfish + 50% Methanol extraction
- Without SPE clean-up
- Very simple, reproducible no major issues

LTs

OA, DTXs, YTXs, AZAs, PTXs

LC-MS/MS for Lipophilic Toxins

- EU Reference Method
- EU-RL SOP specifies:
 - Aims and scope
 - Extraction and general conditions
 - Performance characteristics

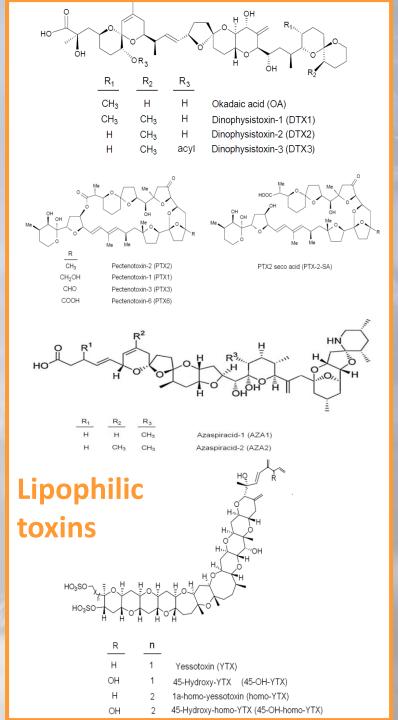

From 1st July 2011

OA-Group •OA, DTX1, DTX2 •Esters of OA-group (DTX3) •PTXs (PTX2, 1, 11)*

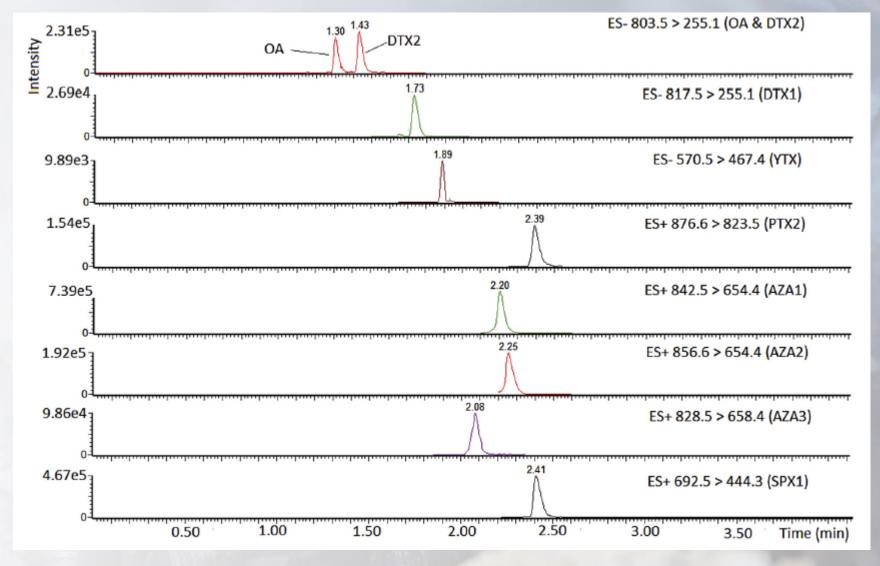
AZA-Group •AZA1, AZA2, AZA3 YTX-Group •YTX •Homo-YTX •45 OH YTX •45 OH homo YTX

*PTXs removed from legislation Sept 2021

LT method overview


- Results report as:
 - Total OA-group
 - Total AZAs
 - Total YTXs
- Direct determination of toxins available as reference standards
 - Indirect determination of other toxins
- High pH mobile phase (pH 11)
 - Ammonium hydroxide
 - Low pH methods can also be used

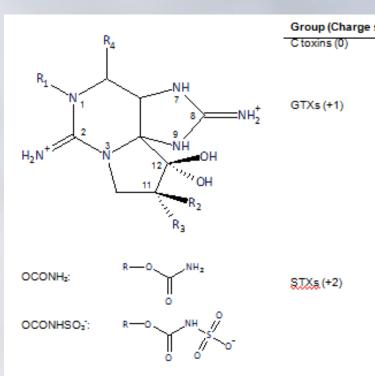
LT LC-MS/MS


- High proportion of OA/DTXs present as acyl-esters
 - Alkaline hydrolysis to liberate

+/- switching to encompass all groups

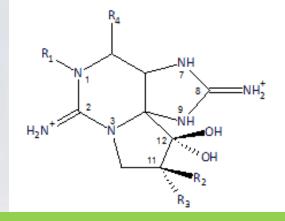
Now implemented in throughout EU

LT LC-MS/MS


Now implemented in throughout EU

PSTs

Saxitoxins


Saxitoxin derivatives

state)	Analogue	R1	R2	R3	R4
	C1 C2 C3 C4	н н он он	H OSO; H OSO;	OSO3 H OSO3 H	OCONHSO; OCONHSO; OCONHSO; OCONHSO;
	dcGTX2 dcGTX2 dcGTX1 dcGTX4 GTX2 GTX3 GTX1 GTX4 GTX5 (B1) GTX6 (B2) M1α M1β M3	115515515111	H OSO ³ H OSO ³ H OSO ³ H H H OH OH	OSO ₃ H OSO ₃ H OSO ₃ H H H OH H OH	OH OH OH OCONH ₂ OCONH ₂ OCONH ₂ OCONH ₂ OCONHSO ₂ OCONHSO ₂ OCONHSO ₂
	deSTX deSTX deNEO STX NEO M2α M2β M4	нтототтт	ннннн	н н н н н н н н н н н н н н н н н н н	H OH OCONH ₂ OCONH ₂ OCONH ₂ OCONH ₂

- N-hydroxyl
 - Carbamate NEO, GTX1&4
 - Decarbamoyl dcNEO, dcGTX1&4
 - N-sulfocarbamate GTX6, C3&4
- Non N-hydroxyl
 - STX, GTX2&3, dcSTX, dcGTX2&3, GTX5, C1&2
- Others
 - M toxins, GC toxins and more...
- All have different toxicities; TEF of some still unknown

PSP toxins

Group (Charge state)	Analogue	R1	R2	R3	R4
C toxins (0)	C1 C2 C3 C4	н н он он	H OSOJ H OSOJ	OSOJ H OSOJ H	OCONHSO3 OCONHSO3 OCONHSO3 OCONHSO3
GTXs(+1)	dcGTX2 dcGTX2 dcGTX1 dcGTX4 GTX2 GTX3 GTX1 GTX4 GTX5 (B1) GTX6 (B2) M1a	нтббттббтбт	H OSO ₃ ' H OSO ₃ ' H OSO ₃ ' H H H	OSO ₃ ' H OSO ₃ ' H OSO ₃ ' H H H OH	OH OH OH OCONH ₂ OCONH ₂ OCONH ₂ OCONH ₂ OCONHSO ₃ OCONHSO ₃
					OCONHSO :

Saxitoxin derivatives

Thankfully: PSTs commonly occurring in naturally contaminated shellfish are available as standards and most have fairly

OH OH OCONH₂ OCONH: OCONH OCONH: OCONH:

- N-hydroxyl
 - Carbamate NEO, well described TEFs
 - Decarbamoyl dcNEO, dcGTX1&4
 - N-sulfocarbamate GTX6, C3&4
- Non N-hydroxyl
 - STX, GTX2&3, dcSTX, dcGTX2&3, GTX5, C1&2
- Others
 - M toxins, GC toxins and more...
- All have different toxicities; TEF of some still unknown

PSP LC-FLD FLD1 A, Ex=340, Em=395 (060224\PSP00012.D) LU NEO-b/dcSTX-c 4.5 GTX14-c / GTX23 **KEY POINT:** Shellfish homogenate Do the same thing every day GTX14-b Extraction 2.5 (1% Acetic acid) dcSTX-b 2. GTX14-a C18 SPE clean-up / pH adj 1.5 -Periodate ox (screen) HPLC-FLD Ion exchange SPE Peroxide (fractionation) oxidation HPLC-FLD Fraction#1 (C Fraction#2 (GTX1/4, Fraction#3 (STX,

GTX2/3, GTX5,

Period

HPLC-FLD

GTX1/4

GTX6

GTX6)

Perox.

GTX2/3,

GTX5

toxins)

Period

*C*3/4

Perox.

C1/2

STX, dcSTX, GTX2/3,

GTX5, C1/2, dcGTX2,3

NEO, dcNEO,

Period

HPLC-FLD

NEO,

dcNEO

dcSTX)

Perox.

STX.

dcSTX

Unoxidised Non-toxic coextractives HPLC-FLD

GTX5

8.801

10

12

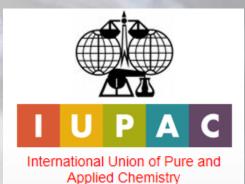
Current approach

- Periodate screen of every sample
- Semi-quantitative "toxicity" reported
- Only samples >400 μg STX eq/kg are subjected to full clean up and quantitation
- All others reported as either:
 - Not detected
 - Detected (< 400)

<u>Reduces requirement for quantitation significantly</u>

Validation and Implementation

Validation of Methods


Not an easy, quick or cheap process:

- Initial testing of method
- Assessment of issues
- Resolve practical issues and pitfalls
- In-house validation to define performance
- Comparison with other methods
- Define implementation approaches
- Implement

To be done for each species

Validation

Selectivity LOD/LOQ (screen & quant) Linearity and range Accuracy (CRM) Toxin recovery Precision (short, medium, long term) Ruggedness Uncertainty of measurement

Implementation of "new" methods In EU: Process is time-consuming:

- Method developed and single-lab validated:
 - Must follow full EC / IUPAC guidelines
 - Demonstrate "equivalence" with current ref method
- Formal multi-lab collaborative study
 - Following specific guidelines (e.g. AOAC)
- Publication as Official Method (e.g. AOAC, CEN)
- Method acceptable within EU legislation
- Approval by Competent Authority and COT
- Accreditation to ISO17025

Implementation now may be possible

Practical Application of Methods

Key Points

- ISO 17025
- Highly trained analysts
- Robust instrumentation
- Automated processes
- Risk awareness, mitigation and contingency
- Availability of reference materials

Internal Quality Control

- Positive controls
- Blanks
- Calibrations
- Calibration checks
- Trend analysis
- External Quality Assurance
- Proficiency testing schemes
- Ring trials
- External materials

Aquatic toxin mitigation – known/regulated

Centre for Environment Fisheries & Aquaculture Science

2010 -

End product testing

REGULATION (EC) No 854/2004 OF THE EUROPEAN PARLIAMENT AND OF THE COUNCIL of 29 April 2004

laying down specific rules for the organisation of official controls on products of animal origin intended for human consumption

Food businesses required under EU law to ensure that shellfish placed on the market are safe for consumption and do not exceed the MPLs stipulated in the EC regulations

Supplier	Kit type	Brief summary of findings
ZeuLab	PP2A	In general – good qualitative indication of toxicity from most kits
BiooScientific	ELISA	Variable accuracies of quantitation
Abraxis	ELISA	Linear range inappropriate for some ELISA
Beacon	ELISA	 Low false +ve – for most kits Low false –ve – for most kits
Europroxima	ELISA	Scan value from LFIA very useful
R-Biopharm	ELISA	In combination with portability – LFIA powerful and flexible tools
Scotia	LFIA	Some issues still need investigation
Neogen	LFIA	More assessments using test kit of choice

Metabolomic biomarkers •

efas

Genetic methods

Science

Centre for Environment Fisheries & Aquaculture

Toxicology catch-up

quantitative approaches

species

sp.

Thank you for listening

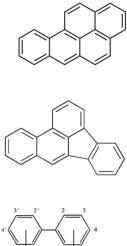
Dr Andrew D. Turner CChem CSci

Principal Chemist Food Safety Group

Topic Leader Natural Aquatic Toxins

FAO Reference Centre Marine Toxins Advisor

Andrew.turner@cefas.co.uk


Food and Agriculture Organization of the United Nations

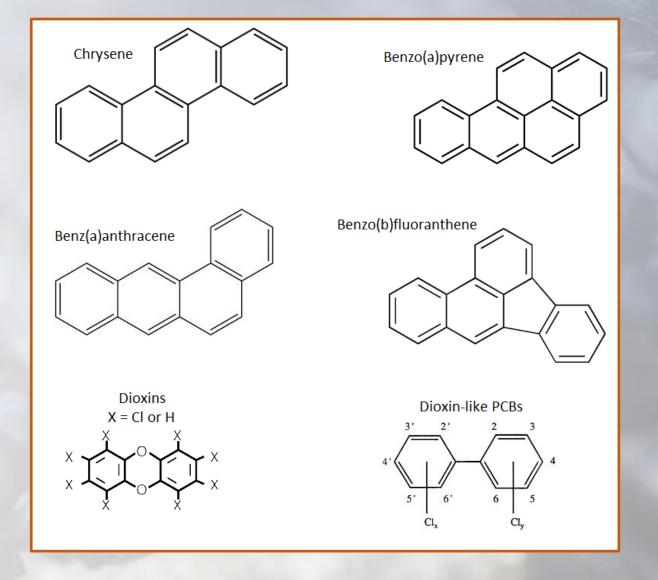
Centre for Environment Fisheries & Aquaculture Science

Sampling and analysis of shellfish for chemical contaminants

Chemical contaminant regulations

• EU Regulations specify:

Maximum permitted levels


Sampling criteria

 Analytical methods & performance characteristics

Chemicals tested

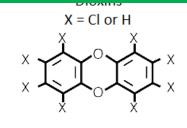
- Metals
 - Pb, Cd, Hg
- PAHs
 - 4 compounds
- Dioxins and dioxin-like PCBs – all organochlorines

Chemicals tested

• Metals

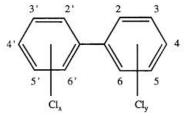
• Pb, Cd, Hg

• PAHs


- 4 compounds •
- Dioxins and did

Anthropogenic sources of contaminants?

Metals from industrial processes
PAHs from fossil fuel combustion &


Chrysene

- other industries
- Dioxins from combustion notably chlorinated materials

Dioxin-like PCBs

Benzo(a)pyrene

Toxicity

- Metals poisoning well known high acute and chronic toxicity
- PAHs Acute (D&V, skin irritation, confusion), chronic (eye/organ damage, breathing problems) + carcinogen, genotoxic, immunotoxic
- Dioxins Acute (skin irritation, pain), known carcinogens & links to learning disabilities, reproductive effects & immunotoxic

Regulatory limits

• <u>Metals</u>

- Lead (Pb) 1.5 mg/kg
- Cadmium (Cd) 1.0 mg/kg
- Mercury (Hg) 0.50 mg/kg

• <u>PAHs</u>

- 5.0 µg/kg for Benzo(a)pyrene
- 30.0 μ g/kg for sum of 4 PAHs:
 - Benzo(a)pyrene
 - Benz(a)anthracene
 - Benzo(b)fluoranthene
 - Chrysene

• <u>Dioxins</u>

- Sum of dioxins (WHOPCDD/F-TEQ) = 3.5 pg/g
- Sum of dioxins and dioxin-like PCBs (WHOPCDD/F-PCB-TEQ) = 6.5 pg/g

29.3.2007	EN	Official Journal of the European Union	L 88/29
		COMMISSION REGULATION (EC) No 333/2007	
		of 28 March 2007	
		ethods of sampling and analysis for the official control of the level , mercury, inorganic tin, 3-MCPD and benzo(a)pyrene in foodstuffs	ls of lead,
		(Text with EEA relevance)	
		A MA	
L 215/4	EN	Official Journal of the European Union	20.8.2011
		COMMISSION REGULATION (EU) No 835/2011	
		of 19 August 2011	

amending Regulation (EC) No 1881/2006 as regards maximum levels for polycyclic aromatic hydrocarbons in foodstuffs

(Text with EEA relevance)

Representative samples

- Sampling frequency determined by FSA/FSS RA currently once per year
 - Except where samples non-compliant (or close)
- Samples to come from selected classified area as per FSA/FSS risk assessment
- Sampling locations defined by FSA/FSS, usually to match toxin or E.coli monitoring point
- Assessed pre-spawning (higher contaminant levels)

Sample weights

- 100g homogenised tissue minimum (PAHs/metals only)
- 500g tissue for full suite (+ Dioxins)
- Guidance provided to LAs
- Cool box packing advice also provided

Species	Approx number or weight in shell to provide 100g flesh for PAH/metal analysis (<i>nb</i> 100g is required as minimum)	Approx number or weight in shell to provide 500g flesh for full suite analysis
Oysters (Crassostrea gigas and Ostrea edulis)	16-20	80-100
Hard Clams	16-20	80-100
Surf clams	16-25 or 1 kg	80-125
Rope grown mussels	60 or 700g	300 or 3kg
Shore mussels	800g	4kg
Cockles	100 or 700g	500 or 3kg

Cefas provide transport boxes + pre-paid delivery labels & forms

Instrument methods

ICPMS for metals

• HRGC-LRMS for PAHs

• HRGC-HRMS for dioxins/PCBs

Quality

- All testing using standard methods
- All methods formally validated
- Accredited to ISO17025
- ISO17025 auditors inspect annually
- Active involvement in proficiency testing for quality assurance
- PT results provided to customer annually

Outcome from results

- FSA/FSS & LAs informed when results above compliance limits (or close)
- Further sampling may be required if results exceeding limits

Overall

•Chemical detection methods provide powerful tools for the protection of shellfish consumers from contaminated shellfish products

•Methods need to be tested and validated in each lab for the species of relevance

Labs must participate in IQC and EQA procedures routinely

•Need to be aware of the potential for "new" or "emerging" toxin threats, now and in the future – more data needs to be generated

Ideally, new biological assays to complement chemical detection tools