

Food and Agriculture Organization of the United Nations

Virtual Regional Workshop on bivalve mollucs sanitation November 2, 3 and 4 2021

Laboratories – Sample collection, transport, analysis and quality of test results

Louise Stockley

Introduction

- Monitoring a harvesting area provides evidence for the presence of, and concentration of faecal indicators and/or specific hazards in the growing area
- Monitoring data used to inform classification, should be of the highest quality
- Controlling the collection, transport and analysis of a sample is essential, as well as being able to demonstrate the quality of the test results

Sample collection – Local authorities responsibility

- Provide protocols for sample collection and transport requirements
- Provide training to Sampling Officer in the relevant sampling techniques
- Specify the location of the sampling point (SP)
- Carry out periodic audits to ensure protocols are adhered too

Example protocol

Centre for Environment Fisheries & Aquaculture Science

Protocol for the Collection of Shellfish under the Microbiological Classification Monitoring Programme (EU Regulation 627/2019)

> Version 10 May 2020

13 Pages				
Document prepared by:	L. Coates	Cefas	Classification: Not classified	
Document quality checked by:	S. Hart	Celas	Review Date: N/A	
Document approved by:	A Younger	Celas	Date: 06/05/2020	

Food Standards Agency London 0030 022 71-69 Shelfleh @food.gov.uk Food Standards Agency Wales 00900 876640 shelfleh wates @food.gov.uk The Centre for Environment, Fisheries & Aquecuture Science Weymouth Laboratory Barnok Road The Nothe Weymouth Denot (TE # 10

Tel +64 (5) 1305 208800 Flar +64 (5) 1305 208801 www.orfias.co.uk Cellas is an executive agency of Cellas

Sampling of bivalve molluscs

- Collect in same way as commercial sampling
- Ensure shellfish are alive, healthy and of a commercial size
- Select shellfish at random to avoid bias from environmental factors

Wash to remove mud and debris Place shellfish in 2 heavy duty bags

SCIENTIFIC NAME	COMMON NAME (ENGLISH)	NUMBER
Pecten maximus	Atlantic great scallop King scallop	12 - 18
Aequipecten opercularis Chlamys (Aequipecten) opercularis (Linnaeus)	Queen scallop	18 - 35
Crassostrea gigas	Pacific oyster	12 - 18
Ostrea edulis	European flat oyster Flat oyster	12 - 18
Mercenaria mercenaria	northern quahog = Hard clams	12 - 18
Tapes philippinarum	Manila clam	18-35
Ruditapes decussatus	Grooved carpet shells	18 - 35
Spisula solida	Thick trough shells	35 – 55
Mya arenaria	Sand gapers	12 - 18
Ensis spp.	Razor clams	12 - 18
<i>Mytilus</i> spp.	Mussels	18 - 35
Cerastoderma edule	Cockles	35 — 55
<i>Donax</i> spp.	Bean clams	40 - 70

Sampling of water

- Collect water before shellfish or sediment samples to reduce sediment disturbance
- Use a sterile glass or plastic bottle
 - Bags can be used for transporting liquid
- Take sample from middle of water column
 - Sampling pole can be used to collect sample
 - Immediately replace lid tightly to prevent leaks

Sample transport

- Transport conditions must not affect the microbiological integrity of the samples
- Cool packs must not be in direct contact with the packed samples
- Samples must be stored below 10 °C if transport is over 4 hrs from sample collection
 - If samples arrive within 4 hrs from collection, arrival temp. must be below the sample collection temp.
- Samples must be analysed within 24 hrs of being collected
 - This can be extended if studies have shown samples can be left for longer

Laboratory receipt and analysis

- Sample submission form and temperature checked (1)
- Sample information recorded and ID number assigned

Sample

Receipt

Laboratory receipt and analysis

• Sample submission form and temperature checked (1)

Sample

Receipt

Sample

analysis

- Sample information recorded and ID number assigned
- Shellfish shucked (2), homogenised (3) and analysed same day (4)
- Results checked by 2 trained staff

Laboratory receipt and analysis

 Sample submission form and temperature checked

Sample

Receipt

Sample

analysis

- Sample information recorded and ID number assigned (1)
- Shellfish shucked (2), homogenised (3) and analysed same day (4)
- Results checked by trained staff
- Results recorded on computer (5)
- Reporting Results reported to customer of results

5	Cefas	Wey Barr The Wey Tele
		Dire

Weymouth Laboratory, Barrack Road, The Nothe, Weymouth, Dorset, DT4 8UB. Telephone: +44 (0) 1305 206600 Direct line: +44 (0) 1305 206644

RESULTS OF MICROBIOLOGICAL EXAMINATIONS OF SHELLFISH HYGIENE SAMPLES

Name of client:				
Address of client:				
Cefas sample number:				
Your reference:				Species:
Date received:		Date	of analysis	:
E. coli MPN/100g	Salmonella spp. in 25 g Vib		<i>rio parahaemolyticus</i> in 25 g	

SOP 1172 - 'General procedure for receipt, opening and homogenisation of shellfish'

SOP 1175 - 'Enumeration of *Escherichia coli* in bivalve molluscan shellfish using the Most Probable Number technique' was used for the analysis of *E. coli*.

SOP 1176 - 'Detection of *Salmonella* spp. in bivalve molluscan shellfish' was used for the analysis of *Salmonella* <u>spp.</u>. This excludes *Salmonella* Typhi.

SOP 1333 - 'Detection of *Vibrio parahaemolyticus* in bivalve molluscan shellfish' was used for the analysis of *V. parahaemolyticus*.

Comments

Recognised microbiological methods for indicators and pathogens

- Methods listed can be used in the sanitation programme

 method will require
 verification in the laboratory
 before use
- Alternative methods can be used but should be validated against a methods listed

MATRIX	TARGET ORGANISM	METHOD
Bivalve molluscs	Sample preparation for all bacteriological methods	ISO 6887-3
	Preparation of dilutions of homogenized samples for all bacteriological methods	ISO 6887-1
	E. coli	ISO 16649-3 (5 tube format)
	MSC	EURL generic protocol (EURL 2007) FDA MSC Method
	Salmonella spp. (detection)	ISO 6579-1
	Salmonella spp. (quantification)	ISO 6579-3
	Pathogenic vibrios	See FAO/WHO (2016)
	Hepatitis A virus and norovirus (quantification)	ISO/TS 15216-1
	Hepatitis A virus and norovirus (qualitative detection)	ISO/TS 15216-2
Water	Faecal coliforms and presumptive <i>E. coli</i> by membrane filtration	ISO 9308-1
	Faecal coliforms and presumptive <i>E. coli</i> by Most Probable Number (MPN)	ISO 9308-2
	MSC	ISO 10705-1
	Standard Methods for the Examination of Water and Wastewater (APHA, 1985)	АРНА

Choice of indicators

Best quality information on human/animal contamination

Least good quality information on

human/animal

contamination

Heterotrophic Bacteria: Most bacteria in nature, includes all pathogens

Total Coliforms: Presence in water may indicate contamination

Thermotolerant Coliforms: Found in intestines of warm-blooded animals

> E. coli: Indicator of fecal contamination

Very broad taxonomic group, found in soil, animal/human guts

Smaller taxonomic group, generally but not all FCs derived from warm blooded animals

Presence of *E. coli* in foodstuffs is always indicative of contamination with faecal pollution

E. coli detection method – ISO 16649-3:2015

1. Preparation of shellfish

• Dilute shellfish 1:10 with 0.1% P

2. Recovery step – MMGB

- Inoculate 5 tube x 3 format, incubate 37±1°C for 24±2h
- 3. Plating confirmation Chromogenic medium
 - Inoculate TBX plates with acid producing tubes detects βglucoronidase enzyme presence, incubate 44±1°C for 21±3h

4. Interpretation of MPN/ 100g shellfish flesh

- Confirmation of *E. coli* β-glucoronidase +ve (blue-green colonies)
- MPN generated from tube combination e.g. 2, 0, 0

ISO 16649-3 is the EU reference method. This is the method expected to be used for exporting to Europe

Appendix	:1:
Аррспал	

TABLE 1: E. coli Most Probable Number (MPN)

MPN of organisms: table for multiple tube methods using $5 \times 1g$, $5 \times 0.1g$, $5 \times 0.01g$.

		_		
1g	0.1g	0.01g	MPN/100g	Category
0	0	0	<18 1	1
0	1	0	18	1
1	0	0	20	1
1	0	1	40	2
1	1	0	40	1
1	2	0	61	2
2	0	0	45	1
2	0	1	68	2
2	1	0	68	1
2	1	1	92	2
2	2	0	93	1
3	0	0	78	1
	1.			

MPN calculation program for the control of shellfish, version 1, dated 2017-01-25, for calculatir

More information can be found in the following sheets 'Equations & Info' and 'Examples'. For details see: B. J.

General data and data for generating the input tables

Name of experiment	Date of experiment	No. of samples	Max. no. of dilutions

Note: A sample/matrix consists of the different dilutions for one target organism (e.g. *Escherichia coli*) with bivalve shellfish matrix. For the Official Control of bivalve shellfish in the EU generally at least 3 dilutions must be analysed.

'Rapid' methods for E. coli enumeration in shellfish

Method name	Pros	Cons	Comments
TBGA-MPN (EU reference)	 "Gold-standard"Established, well- characterised	 ~2 days for results 	Reference method in European legislation
Impedance	ValidatedRapid (24 hours)	ExpensiveUses proprietary consumables	Mostly used in France
Pour-plate	 Validated Rapid (24 hours) Cheap (ish) 	 High detection limit (200 CFU/100 g) Availability of media? 	Mostly used in Netherlands
PCR-MPN	 Rapid (30 hours) Sensitive Equipment and consumables commonly available 	 Not validated Needs more work May be expensive 	Not recommended for use yet

FRNA bacteriophage detection method – ISO 10705-1:1995

1. Preparation of shellfish

• Dilute shellfish 1:3 with 0.1% P

2. Preparation of bacterial host

- *S. typhimrium* (WG49) genetically modified with *E. coli* sex pili
- Grow host in TYGB to obtain $7 40 \times 10^7$ cfu/ml

3. Agar overlay

• Mix bacterial host, molten agar (TYGA) and sample, form an overlay, incubate 37±1°C for 18±4h

4. Interpretation of cfu / 100g shellfish flesh

 Count plaques – Bacteriophage attach to sex pili of *E. coli,* cells lyse causing visible holes in bacterial lawn

Accreditation to ISO 17025:2017

- Holding accreditation demonstrates a laboratory can operate competently and generate valid results, thereby promoting confidence in their work
- ISO/IEC 17025 General requirements for the competence of testing and calibration laboratories

Process Standard Operating Procedure Shellfish hygiene SOP 1175 ENUMERATION OF *ESCHERICHIA COLI* IN BIVALVE MOLLUSCAN SHELLFISH USING THE MOST PROBABLE NUMBER (MPN) TECHNIQUE

Proficiency testing (PT)

- PT or external quality assessment (EQA) is a valuable tool to assess the performance and verifies the accuracy and reliability of a lab's test result
- PT samples should be analysed in same way as routine samples
- Periodic testing of matrix samples is important to test aspects of the method not challenged by laboratory constructed material (e.g. Lenticule[™])
- Allocated scores helps to identify a problem from a single distribution and over time (rolling)

PT benefits

- Provides an independent assessment of a laboratory's performance
- Provides a performance comparison with other participant laboratories
- Helps to identify areas where there may be problems
- A requirement for auditing bodies (for quality and trade)
- Used to train staff and assess ongoing competency
- Can be used to generate data to support method development and validation
- Regular participation demonstrates commitment to maintaining and improving performance

Summary

- Data collected during a Sampling Programme can be used in important public health decisions
- Results generated must originate from an International method
- It is important to have assurance that generated results are of a very high quality
- Accreditation is a way for a laboratory to demonstrate quality
- Participation in Proficiency Testing is a mechanism to demonstrate competence

THANK YOU